Permutation Statistics and Multiple Pattern Avoidance

Wuttisak Trongsiriwat

Massachusettts Institute of Technology

Permutation Patterns '13

Let \mathfrak{S}_n be the set of permutations of $[n] = \{1, 2, ..., n\}$ and $\mathfrak{S} := \bigcup_{n \geq 0} \mathfrak{S}_n$.

Let \mathfrak{S}_n be the set of permutations of $[n] = \{1, 2, ..., n\}$ and $\mathfrak{S} := \bigcup_{n \geq 0} \mathfrak{S}_n$.

For $\pi, \sigma \in \mathfrak{S}$, we say that σ contains π if there is a subsequence of σ having the same relative order as π .

We say that σ avoids π (or σ is π -avoiding) if σ does not contain π .

Let \mathfrak{S}_n be the set of permutations of $[n] = \{1, 2, ..., n\}$ and $\mathfrak{S} := \bigcup_{n \geq 0} \mathfrak{S}_n$.

For $\pi, \sigma \in \mathfrak{S}$, we say that σ contains π if there is a subsequence of σ having the same relative order as π .

We say that σ avoids π (or σ is π -avoiding) if σ does not contain π . For $\Pi \subset \mathfrak{S}$, σ is Π -avoiding if σ avoids π for each $\pi \in \Pi$.

Let \mathfrak{S}_n be the set of permutations of $[n] = \{1, 2, ..., n\}$ and $\mathfrak{S} := \bigcup_{n \geq 0} \mathfrak{S}_n$.

For $\pi, \sigma \in \mathfrak{S}$, we say that σ contains π if there is a subsequence of σ having the same relative order as π .

We say that σ avoids π (or σ is π -avoiding) if σ does not contain π . For $\Pi \subset \mathfrak{S}$, σ is Π -avoiding if σ avoids π for each $\pi \in \Pi$.

Notations:

$$\mathfrak{S}_n(\pi) := \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}, \quad \mathfrak{S}(\pi) := \bigcup_{n \geq 0} \mathfrak{S}_n(\pi),$$

$$\mathfrak{S}_n(\Pi) := \bigcap_{\pi \in \Pi} \mathfrak{S}_n(\pi), \qquad \qquad \mathfrak{S}(\Pi) := \bigcup_{n \geq 0} \mathfrak{S}_n(\Pi).$$

Let \mathfrak{S}_n be the set of permutations of $[n] = \{1, 2, ..., n\}$ and $\mathfrak{S} := \bigcup_{n \geq 0} \mathfrak{S}_n$.

For $\pi, \sigma \in \mathfrak{S}$, we say that σ contains π if there is a subsequence of σ having the same relative order as π .

We say that σ avoids π (or σ is π -avoiding) if σ does not contain π . For $\Pi \subset \mathfrak{S}$, σ is Π -avoiding if σ avoids π for each $\pi \in \Pi$.

Notations:

$$\mathfrak{S}_n(\pi) := \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}, \quad \mathfrak{S}(\pi) := \bigcup_{n \geq 0} \mathfrak{S}_n(\pi), \\ \mathfrak{S}_n(\Pi) := \bigcap_{\pi \in \Pi} \mathfrak{S}_n(\pi), \qquad \qquad \mathfrak{S}(\Pi) := \bigcup_{n \geq 0} \mathfrak{S}_n(\Pi).$$

Two sets of patterns Π and Π' are Wilf equivalent, written $\Pi \equiv \Pi'$, if $|\mathfrak{S}_n(\Pi)| = |\mathfrak{S}_n(\Pi')|$ for all n.

Example: The permutation 46127538.

Example: The permutation 46127538 contains 3142.

Example: The permutation 46127538 contains 3142 but avoids 4321.

Example: The permutation 46127538 contains 3142 but avoids 4321.

Remark: We have a D_4 -action on \mathfrak{S}_n .

st-polynomial

For a permutation statistic st : $\mathfrak{S} \to \mathbb{N}$, we define the *st-polynomial* with respect to Π as

$$F_n^{\mathsf{st}}(\Pi;q) := \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\mathsf{st}(\sigma)}.$$

We may drop the q if it is clear from the context.

st-polynomial

For a permutation statistic st : $\mathfrak{S} \to \mathbb{N}$, we define the *st-polynomial* with respect to Π as

$$F_n^{\mathrm{st}}(\Pi;q) := \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\mathrm{st}(\sigma)}.$$

We may drop the q if it is clear from the context.

Two sets of patterns Π and Π' are st-Wilf equivalent, written $\Pi \stackrel{st}{\equiv} \Pi'$, if

$$F_n^{\rm st}(\Pi) = F_n^{\rm st}(\Pi')$$

for all $n \in \mathbb{N}$.

Inversion statistic

The *inversion number* of a permutation σ is

$$\mathsf{inv}(\sigma) := \#\{(i,j) : i < j, \sigma(i) > \sigma(j)\}.$$

Inversion statistic

The *inversion number* of a permutation σ is

$$\mathsf{inv}(\sigma) := \#\{(i,j) : i < j, \sigma(i) > \sigma(j)\}.$$

Theorem (DDJSS '12)

The inv-Wilf equivalent classes in \mathfrak{S}_3 are

$$\{123\}, \{321\}, \{132, 213\}, \{231, 312\}.$$

Conjecture (DDJSS '12)

If
$$\Pi \stackrel{\text{inv}}{\equiv} \Pi'$$
, then $\Pi = f(\Pi')$ for some $f \in D_4$.

Conjecture (DDJSS '12)

If
$$\Pi \stackrel{inv}{\equiv} \Pi'$$
, then $\Pi = f(\Pi')$ for some $f \in D_4$.

Answer: No.

For instance, $\{312, 32415\} \stackrel{\text{inv}}{\equiv} \{312, 24315\}.$

Conjecture (DDJSS '12)

If
$$\Pi \stackrel{inv}{\equiv} \Pi'$$
, then $\Pi = f(\Pi')$ for some $f \in D_4$.

Answer: No.

For instance, $\{312, 32415\} \stackrel{\text{inv}}{\equiv} \{312, 24315\}.$

Definition

Definition

Figure: The permutation 213[123,1,21]

```
Let \pi_* := 21[\pi, 1] and \iota_r := 12 \cdots r.
 Every \pi \in \mathfrak{S}(312) can be written as \pi = \iota_r[\pi_{1*}, ..., \pi_{r*}] where \pi_j \in \mathfrak{S}(312).
```


For each
$$\sigma=213[\sigma_1,1,\sigma_2]\in\mathfrak{S}_{n+1}$$
 with $|\sigma_1|=k$,

$$\operatorname{inv}(\sigma) = k + \operatorname{inv}(\sigma_1) + \operatorname{inv}(\sigma_2).$$

9 / 21

$$\operatorname{inv}(\sigma) = k + \operatorname{inv}(\sigma_1) + \operatorname{inv}(\sigma_2).$$

Therefore

$$F_{n+1}^{\text{inv}}(312) = \sum_{k=0}^{n} q^k F_k^{\text{inv}}(312) \cdot F_{n-k}^{\text{inv}}(312)$$

For each
$$\sigma=213[\sigma_1,1,\sigma_2]\in\mathfrak{S}_{n+1}$$
 with $|\sigma_1|=k$,

$$\operatorname{inv}(\sigma) = k + \operatorname{inv}(\sigma_1) + \operatorname{inv}(\sigma_2).$$

Therefore

$$F_{n+1}^{\text{inv}}(312) = \sum_{k=0}^{n} q^{k} F_{k}^{\text{inv}}(312) \cdot F_{n-k}^{\text{inv}}(312)$$

So
$$F(x) = \sum_{n\geq 0} F_n^{\text{inv}}(312)x^n$$
 satisfies
$$F(x) - 1 = xF(gx)F(x),$$

For each
$$\sigma=213[\sigma_1,1,\sigma_2]\in\mathfrak{S}_{n+1}$$
 with $|\sigma_1|=k$,

$$\operatorname{inv}(\sigma) = k + \operatorname{inv}(\sigma_1) + \operatorname{inv}(\sigma_2).$$

Therefore

$$F_{n+1}^{\text{inv}}(312) = \sum_{k=0}^{n} q^k F_k^{\text{inv}}(312) \cdot F_{n-k}^{\text{inv}}(312)$$

So
$$F(x) = \sum_{n \geq 0} F_n^{\text{inv}}(312) x^n$$
 satisfies

$$F(x) - 1 = xF(qx)F(x),$$

i.e.

$$F(x) = \frac{1}{1 - \frac{x}{1 - \frac{qx}{1 - \frac{q^3x}{1 - \frac{q^3$$

We will consider permutation statistics st : $\mathfrak{S} \to \mathbb{N}$ satisfying

$$\operatorname{st}(\sigma) = f(k, n - k) + \operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2) \tag{3}$$

for some function $f: \mathbb{N}^2 \to \mathbb{N}$.

We will consider permutation statistics st : $\mathfrak{S} \to \mathbb{N}$ satisfying

$$\operatorname{st}(\sigma) = f(k, n - k) + \operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2) \tag{3}$$

for some function $f: \mathbb{N}^2 \to \mathbb{N}$.

Example: inv, des, and 213.

$$des(\sigma) = \#\{i \in [n-1] : \sigma(i) > \sigma(i+1)\},$$

$$\underline{213}(\sigma) = \#\{i \in [n-2] : \sigma(i+1) < \sigma(i) < \sigma(i+2)\}.$$

We will consider permutation statistics st : $\mathfrak{S} \to \mathbb{N}$ satisfying

$$\operatorname{st}(\sigma) = f(k, n - k) + \operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2) \tag{3}$$

for some function $f: \mathbb{N}^2 \to \mathbb{N}$.

Example: inv, des, and 213.

$$des(\sigma) = \#\{i \in [n-1] : \sigma(i) > \sigma(i+1)\},$$

$$\underline{213}(\sigma) = \#\{i \in [n-2] : \sigma(i+1) < \sigma(i) < \sigma(i+2)\}.$$

We have

$$\begin{aligned} &\text{inv}(\sigma) = k + \text{inv}(\sigma_1) + \text{inv}(\sigma_2), \\ &\text{des}(\sigma) = 1 - \delta_{0,k} + \text{des}(\sigma_1) + \text{des}(\sigma_2), \\ &\underline{213}(\sigma) = (1 - \delta_{0,k})(1 - \delta_{k,n}) + \underline{213}(\sigma_1) + \underline{213}(\sigma_2). \end{aligned}$$

Suppose $\pi = \iota_r[\pi_{1*},...,\pi_{r*}]$. We write

$$\underline{\pi}_i := \begin{cases} \pi_1 \text{ (not } \pi_{1*}) & \text{if } i = 1, \\ \iota_i[\pi_{1*}, ..., \pi_{i*}] & \text{otherwise} \end{cases}$$

and

$$\overline{\pi}_i := \iota_{r-i+1}[\pi_{i_*}, ..., \pi_{r_*}].$$

Suppose $\pi = \iota_r[\pi_{1*}, ..., \pi_{r*}]$. We write

$$\underline{\pi}_i := egin{cases} \pi_1 & ext{(not π_{1*})} & ext{if $i=1$,} \ \iota_i[\pi_{1*},...,\pi_{i*}] & ext{otherwise} \end{cases}$$

and

$$\overline{\pi}_i := \iota_{r-i+1}[\pi_{i_*}, ..., \pi_{r_*}].$$

Let $\Pi = \{312, \pi^{(1)}, ..., \pi^{(m)}\}$ where $\pi^{(j)} = \iota_{r_j}[(\pi_1^{(j)})_*, ..., (\pi_{r_j}^{(j)})_*]$. For $I = (i_1, ..., i_m)$, we denote

$$\underline{\Pi}_{I} = \{312, \underline{\pi^{(1)}}_{i_1}, ..., \underline{\pi^{(m)}}_{i_m}\}$$

and

$$\overline{\Pi}_{I} = \{312, \overline{\pi^{(1)}}_{i_1}, ..., \overline{\pi^{(m)}}_{i_m}\}.$$

Main theorem

Theorem (T. '13+)

Let $\Pi = \{312, \pi^{(1)}, ..., \pi^{(m)}\}$ where $\pi^{(j)} = \iota_r[\pi_{1*}^{(j)}, ..., \pi_{r_j*}^{(j)}]$. Suppose $st : \mathfrak{S} \to \mathbb{N}$ satisfies (\mathfrak{S}). Then $F_0^{st}(\Pi) = 0$ if some $\pi^{(j)} = \epsilon$ and 1 otherwise, and for $n \geq 1$

$$F_{n+1}^{st}(\Pi;q) = \sum_{k=0}^{n} q^{f(k,n-k)} \left[\sum_{S \subseteq [m]} (-1)^{|S|} \sum_{\substack{I=(i_1,\ldots,i_m):\\1 \leq i_j \leq r_j - \delta_j}} F_k^{st}(\underline{\Pi}_I) \cdot F_{n-k}^{st}(\overline{\Pi}_{I+\delta}) \right],$$

where $\delta = (\delta_1, ..., \delta_m)$ with $\delta_j = 1$ if $j \in S$ and 0 if $j \notin S$.

Main theorem

Theorem (T. '13+)

Let $\Pi = \{312, \pi^{(1)}, ..., \pi^{(m)}\}$ where $\pi^{(j)} = \iota_r[\pi_{1*}^{(j)}, ..., \pi_{r_i*}^{(j)}]$. Suppose $st : \mathfrak{S} \to \mathbb{N}$ satisfies (©). Then $F_0^{st}(\Pi) = 0$ if some $\pi^{(j)} = \epsilon$ and 1 otherwise, and for $n \ge 1$

$$F_{n+1}^{st}(\Pi;q) = \sum_{k=0}^n q^{f(k,n-k)} \left[\sum_{S \subseteq [m]} (-1)^{|S|} \sum_{\substack{I=(i_1,\ldots,i_m):\\1 \leq i_j \leq r_j - \delta_j}} F_k^{st}(\underline{\Pi}_I) \cdot F_{n-k}^{st}(\overline{\Pi}_{I+\delta}) \right],$$

where $\delta = (\delta_1, ..., \delta_m)$ with $\delta_j = 1$ if $j \in S$ and 0 if $j \notin S$.

Remark: The special case q=1 yields the number $|\mathfrak{S}_n(\Pi)|$, which generalizes a result by Mansour and Vainshtien.

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

$$\pi^{(1)} = 2314 = 12[12_*, \epsilon_*] \text{ and } \pi^{(2)} = 2143 = 12[1_*, 1_*].$$

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

$$\pi^{(1)} = 2314 = 12[12_*, \epsilon_*]$$
 and $\pi^{(2)} = 2143 = 12[1_*, 1_*]$.

5	1	$\underline{\Pi}_I$	$\overline{\Pi}_I$	$F_k^{inv}(\underline{\Pi}_I) \cdot F_{n-k}^{inv}(\overline{\Pi}_{I+\delta})$
Ø	(1,1)	{312,12,1}	П	$\delta_{0,k} \cdot a_{n-k}$
	(1,2)	{312,12,2143}	{312,2314,21}	1
	(2,1)	{312,2314,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(2,2)	П	{312,1,21}	$\delta_{0,n-k} \cdot a_k$

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

$$\pi^{(1)} = 2314 = 12[12_*, \epsilon_*]$$
 and $\pi^{(2)} = 2143 = 12[1_*, 1_*]$.

5	1	$\underline{\Pi}_I$	$\overline{\Pi}_I$	$F_k^{inv}(\underline{\Pi}_I) \cdot F_{n-k}^{inv}(\overline{\Pi}_{I+\delta})$
Ø	(1,1)	{312,12,1}	П	$\delta_{0,k} \cdot a_{n-k}$
	(1,2)	{312,12,2143}	{312,2314,21}	1
	(2,1)	{312,2314,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(2,2)	П	{312,1,21}	$\delta_{0,n-k}\cdot a_k$
{1}	(1,1)	{312,12,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(1,2)	{312,12,2143}	{312,1,21}	$\delta_{0,n-k}$

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

$$\pi^{(1)} = 2314 = 12[12_*, \epsilon_*]$$
 and $\pi^{(2)} = 2143 = 12[1_*, 1_*]$.

5	1	$\underline{\Pi}_I$	$\overline{\Pi}_I$	$F_k^{inv}(\underline{\Pi}_I) \cdot F_{n-k}^{inv}(\overline{\Pi}_{I+\delta})$
Ø	(1,1)	{312,12,1}	П	$\delta_{0,k} \cdot a_{n-k}$
	(1,2)	{312,12,2143}	{312,2314,21}	1
	(2,1)	{312,2314,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(2,2)	П	{312,1,21}	$\delta_{0,n-k}\cdot a_k$
{1}	(1,1)	{312,12,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(1,2)	{312,12,2143}	{312,1,21}	$\delta_{0,n-k}$
{2}	(1,1)	{312,12,1}	{312,2314,21}	$\delta_{0,k}$
	(2,1)	{312,2314,1}	{312,1,21}	$\delta_{0,k} \cdot \delta_{0,n-k}$

Compute $a_n = F_n^{\text{inv}}(\Pi)$, where $\Pi = \{312, 2314, 2143\}$.

$$\pi^{(1)} = 2314 = 12[12_*, \epsilon_*]$$
 and $\pi^{(2)} = 2143 = 12[1_*, 1_*]$.

5	1	$\underline{\Pi}_I$	$\overline{\Pi}_I$	$F_k^{inv}(\underline{\Pi}_I) \cdot F_{n-k}^{inv}(\overline{\Pi}_{I+\delta})$
Ø	(1,1)	{312,12,1}	П	$\delta_{0,k} \cdot a_{n-k}$
	(1,2)	{312,12,2143}	{312,2314,21}	1
	(2,1)	{312,2314,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(2,2)	П	{312,1,21}	$\delta_{0,n-k}\cdot a_k$
{1}	(1,1)	{312,12,1}	{312,1,2143}	$\delta_{0,k} \cdot \delta_{0,n-k}$
	(1,2)	{312,12,2143}	{312,1,21}	$\delta_{0,n-k}$
{2}	(1,1)	{312,12,1}	{312,2314,21}	$\delta_{0,k}$
	(2,1)	{312,2314,1}	{312,1,21}	$\delta_{0,k} \cdot \delta_{0,n-k}$
{1,2}	(1,1)	{312,12,1}	{312,1,21}	$\delta_{0,k} \cdot \delta_{0,n-k}$

Therefore

$$egin{aligned} a_{n+1} &= \sum_{k=0}^n q^k \left[\delta_{0,k} a_{n-k} + \delta_{0,n-k} a_k + 1 - \delta_{0,k} - \delta_{0,n-k}
ight] \ &= (1+q^n) a_n + rac{1-q^{n+1}}{1-q} - (1+q^n) \ &= (1+q^n) a_n + q \left(rac{1-q^{n-1}}{1-q}
ight). \end{aligned}$$

Therefore

$$egin{aligned} a_{n+1} &= \sum_{k=0}^n q^k \left[\delta_{0,k} a_{n-k} + \delta_{0,n-k} a_k + 1 - \delta_{0,k} - \delta_{0,n-k}
ight] \ &= (1+q^n) a_n + rac{1-q^{n+1}}{1-q} - (1+q^n) \ &= (1+q^n) a_n + q \left(rac{1-q^{n-1}}{1-q}
ight). \end{aligned}$$

In particular, by setting q=1 we get $a_{n+1}=2a_n+n-1$ with $a_0=a_1=1$. Thus

$$|\mathfrak{S}_n(312, 2314, 2143)| = 2^n - n.$$

Proof:

Restrict everything to the set $\mathfrak{S}_{n+1}^k(312) = \{ \sigma \in \mathfrak{S}_{n+1}(312) : \sigma(k) = 1 \}.$

Proof:

Restrict everything to the set $\mathfrak{S}_{n+1}^k(312) = \{ \sigma \in \mathfrak{S}_{n+1}(312) : \sigma(k) = 1 \}.$

Lemma

Let $\sigma=213[\sigma_1,1,\sigma_2], \pi=\iota_r[\pi_{1*},...,\pi_{r*}]\in\mathfrak{S}(312)$. Then σ avoids π if and only if the condition

 (C_i) : σ_1 avoids $\underline{\pi}_i$ and σ_2 avoids $\overline{\pi}_i$

hold for some $i \in [r]$.

Proof:

Restrict everything to the set $\mathfrak{S}_{n+1}^k(312) = \{ \sigma \in \mathfrak{S}_{n+1}(312) : \sigma(k) = 1 \}.$

Lemma

Let $\sigma=213[\sigma_1,1,\sigma_2], \pi=\iota_r[\pi_{1*},...,\pi_{r*}]\in\mathfrak{S}(312)$. Then σ avoids π if and only if the condition

 (C_i) : σ_1 avoids $\overline{\pi}_i$ and σ_2 avoids $\overline{\pi}_i$

hold for some $i \in [r]$.

Let A_i^j , where $1 \le j \le m$ and $1 \le i \le r_j$, be the set of permutations in $\mathfrak{S}_{n+1}^k(312)$ satisfying the condition

 (C_i^j) : σ_1 avoids $\overline{\pi^{(j)}}_i$ and σ_2 avoids $\overline{\pi^{(j)}}_i$.

(So every $\sigma \in A_i^j$ avoids $\pi^{(j)}$.)

Proof (cont'd):

For
$$I = (i_1, ..., i_m) \in [r_1] \times [r_2] \times \cdots \times [r_m]$$
, we define
$$A_I = A_{i_1, i_2, ..., i_m} := A^1_{i_1} \cap A^2_{i_2} \cap A^m_{i_m}.$$

Proof (cont'd):

For
$$I = (i_1, ..., i_m) \in [r_1] \times [r_2] \times \cdots \times [r_m]$$
, we define

$$A_I = A_{i_1,i_2,\dots,i_m} := A^1_{i_1} \cap A^2_{i_2} \cap A^m_{i_m}.$$

So $\mathfrak{S}_{n+1}^k(\Pi)$ is the union

$$\mathfrak{S}_{n+1}^k(\Pi) = \bigcup_{i_1,\ldots,i_m} A_{i_1,i_2,\ldots,i_m},$$

where the union is taken over all *m*-tuples $I = (i_1, ..., i_m)$ in $[r_1] \times [r_2] \times \cdots \times [r_m]$.

Proof (cont'd):

For
$$I = (i_1, ..., i_m) \in [r_1] \times [r_2] \times \cdots \times [r_m]$$
, we define

$$A_I = A_{i_1,i_2,...,i_m} := A_{i_1}^1 \cap A_{i_2}^2 \cap A_{i_m}^m.$$

So $\mathfrak{S}_{n+1}^k(\Pi)$ is the union

$$\mathfrak{S}_{n+1}^k(\Pi) = \bigcup_{i_1,\ldots,i_m} A_{i_1,i_2,\ldots,i_m},$$

where the union is taken over all *m*-tuples $I = (i_1, ..., i_m)$ in $[r_1] \times [r_2] \times \cdots \times [r_m]$.

Then Inclusion-Exclusion (using Möbius inversion formula)!

Nontrivial st-Wilf equivalences

Corollary

Let $\pi_i^{(j)}, \pi_i^{\prime(j)}, 1 \leq j \leq m, 1 \leq i \leq r_m$, be permutations such that

$$\{312,\pi_{i_1}^{(1)},...,\pi_{i_m}^{(m)}\} \stackrel{\mathit{st}}{\equiv} \{312,\pi_{i_1}^{\prime(1)},...,\pi_{i_m}^{\prime(m)}\}$$

for all m-tuples $I = (i_1, ..., i_m) \in [r_1] \times ... \times [r_m]$.

Setting

$$\pi^{(j)} = \iota_r[\pi_{1*}^{(j)},...,\pi_{r_{j*}}^{(j)}] \text{ and } \pi'^{(j)} = \iota_r[\pi_{1*}'^{(j)},...,\pi_{r_{j*}}'^{(j)}],$$

we have

$$\{312, \pi^{(1)}, ..., \pi^{(m)}\} \stackrel{st}{\equiv} \{312, \pi'^{(1)}, ..., \pi'^{(m)}\}.$$

Corollary (m=1)

Let $\pi_i, \pi_i', 1 \leq i \leq r$, be permutations such that

$$\{312, \pi_i\} \stackrel{st}{\equiv} \{312, \pi_i'\}$$

for all $i \in [r]$. Then

$$\{312, \iota_r[\pi_{1*}, ..., \pi_{r*}]\} \stackrel{st}{\equiv} \{312, \iota_r[\pi'_{1*}, ..., \pi'_{r*}]\}.$$

Corollary (m=1)

Let $\pi_i, \pi'_i, 1 \leq i \leq r$, be permutations such that

$$\{312, \pi_i\} \stackrel{st}{\equiv} \{312, \pi_i'\}$$

for all $i \in [r]$. Then

$$\{312, \iota_r[\pi_{1*}, ..., \pi_{r*}]\} \stackrel{st}{\equiv} \{312, \iota_r[\pi'_{1*}, ..., \pi'_{r*}]\}.$$

For inversion statistic, we obtain $\{312, \pi_i\} \stackrel{\text{inv}}{\equiv} \{312, \pi_i'\}$ by simply take each π_i' to be either π_i or π_i^t .

Corollary (m=1)

Let $\pi_i, \pi'_i, 1 \leq i \leq r$, be permutations such that

$$\{312, \pi_i\} \stackrel{st}{\equiv} \{312, \pi_i'\}$$

for all $i \in [r]$. Then

$$\{312, \iota_r[\pi_{1*}, ..., \pi_{r*}]\} \stackrel{st}{\equiv} \{312, \iota_r[\pi'_{1*}, ..., \pi'_{r*}]\}.$$

For inversion statistic, we obtain $\{312, \pi_i\} \stackrel{\text{inv}}{\equiv} \{312, \pi_i'\}$ by simply take each π_i' to be either π_i or π_i^t .

Proposition

For $\sigma \in \mathfrak{S}(312)$, $des(\sigma) = des(\sigma^t)$.

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{G} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

{312,25431876CBDAFE9}

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{G} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

{312,25431876CBDAFE9}

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

 $\begin{array}{l} \{312,\!25431876 \text{CBDAFE9}\} \\ \stackrel{\text{st}}{\equiv} \{312,\!43251876 \text{CBDAFE9}\} \end{array}$

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

 $\begin{array}{l} \{312,\!25431876 \text{CBDAFE9}\} \\ \stackrel{\text{st}}{\equiv} \{312,\!43251876 \text{CBDAFE9}\} \end{array}$

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

 $\begin{cases} 312,25431876 \text{CBDAFE9} \\ \stackrel{\text{st}}{\equiv} \\ \{312,43251876 \text{CBDAFE9} \} \end{cases}$

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.

 $\begin{array}{l} \{312,\!25431876 \text{CBDAFE9}\} \\ \stackrel{\text{st}}{\equiv} \{312,\!43251876 \text{CBDAFE9}\} \end{array}$

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.


```
 \begin{cases} 312,25431876 CBDAFE9 \} \\ \stackrel{\text{st}}{\equiv} \{312,43251876 CBDAFE9 \} \\ \stackrel{\text{st}}{\equiv} \{312,43251876 BDCAFE9 \} \end{cases}
```

Suppose st : $\mathfrak{S} \to \mathbb{N}$ satisfies \mathfrak{S} and that st $(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$.


```
 \begin{cases} 312,25431876 CBDAFE9 \} \\ \stackrel{\text{st}}{\equiv} \{312,43251876 CBDAFE9 \} \\ \stackrel{\text{st}}{\equiv} \{312,43251876 BDCAFE9 \} \end{cases}
```

References

T. Dokos, T. Dwyer, B.P. Johnson, B.E. Sagan, and K. Selsor Permutation patterns and statistics

Discrete Mathematics 312(8), 2760–2775, 2012.

T. Mansour, A. Vainshtein,
Restricted 132-Avoiding Permutations

Advances in Applied Mathematics **26**(3), 258–269, 2001.

Thank you.